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Abstract. Based on the LLP-H approach, a detailed study of the electron confinement in a
polar semiconductor heterostructure has been made to derive analytically the ground state energy
and the effective mass of the Fröhlich polaron in quasi-two-dimensional (Q2D) and quasi-one-
dimensional (Q1D) systems.

1. Introduction

A great deal of research effort is currently being devoted to the study of low-dimensional
semiconductor systems because of their potential application in device technology. With
the advancement in semiconductor technology, it is now possible to confine electrons
(holes) in quasi-two-dimensional and quasi-one-dimensional semiconductor structures such
as in hetero-junctions, quantum well or quantum-wire-like systems [1–8]. Studies on these
quantum structures are important not only from the technological point of view but also for
the understanding of a number of important phenomena [9, 10] concerning electrical and
optical properties in these systems. In particular, the interaction of electron with longitudinal
optical phonon being an important mechanism in deciding electrical and optical properties
of polar semiconductor, a systematic study is crucial in achieving a detailed understanding
of the polaron properties in reduced dimensionality.

Although the bulk of the literature over the years has been devoted mainly to the study of
the polaronic properties in the three-dimensional (3D) system [11, 12], a considerable effort
has lately gone into exploring the polaron properties in 2D systems [13–15]. Recent years
have witnessed a number of experiments and theories on the polaronic effects in quantum
heterostructures [16–36]. The study of the polaron effects in 2D structure [16–23] shows
that the reduction of the spatial dimension greatly affects the electron–phonon interaction
and it is found that polaronic properties are very much dependent on the dimensionality
of the quantum structure. In most of these works the phonons are assumed to be the
same as in the bulk material [18, 19]. In contrast to the bulk phonon model, the optical
phonon confinement has also been considered by many authors [21–23]. Some studies on
the electron–phonon interaction in Q1D systems [24–28] have also been done recently and
these indicate that polaron effects are much more pronounced in Q1D structure than those
in Q2D structure.

The purpose of the present paper is to report a unifying and comprehensive model
yielding an explicit track of the electron–phonon interaction as a function of the effective
dimensionality. Here we have made a systematic investigation of the ground state energy
and the effective mass of the Q2D and Q1D polaron within the framework of the LLP-H
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method [14]. Regardless of the confined structure of the system, polar optical phonons have
been treated in our approach in the spirit of bulk theory.

2. Formulation

The standard Hamiltonian for an electron or hole interacting with the optical modes in a
polar crystal is given by (in Fröhlich units)

Hp = p2+
∑
q

b†qbq +
∑
q

(ξqrbq + HC) (1)

whereξqr = ξq exp(iq · r), ξq = −i(4πα/V )1/2, α is the usual Fr̈ohlich constant andV is
the volume of the crystal.

To address polaron formation in reduced dimensionality phonons are always considered
to be 3D, although electron motions are to be localized in reduced dimensions. In a strict
2D case the electron can be assumed to be localized well aroundx = 0 and in 1D it is
localized in theyz plane around thex axis.

We now consider a 3D polaron in a quantum dot potential described by the Hamiltonian

H̃ = Hp + λ4
1x

2+ λ4
2y

2+ λ4
3z

2 (2)

where λ1, λ2 and λ3 represent the strength of the potential in thex, y and z direction
respectively. Our approach is essentially directed at choosing the appropriate Hamiltonian
to describe 1D and 2D polaron motion.

Now the total momentum of the system

P̃ = p+
∑
q

qb†qbq (3)

commutes with the HamiltoniañH([H̃ , P̃ ] = 0 = [P̃ , H̃ ]) and is therefore a constant of
motion. Following the LLP-H scheme, we now define a functionalJ = 〈9̃|H̃ − u · P̃ |9̃〉
which is to be minimized with respect to the appropriate variational parameter. Hereu is
the Lagrange multiplier with the dimension of velocity and9̃ is the appropriately chosen
system wave function of the system.

We now rewriteJ as

J = 〈9̃|UU−1|H̃ − u · P̃ |UU−1|9̃〉 = 〈9|H − u · P |9〉 (4)

where

U = exp

{∑
q

(fqb
†
q − HC)

}
(5)

with fq as variational functions to be determined by minimizing the functionalJ .
Now

H = U−1H̃U = p2+ λ4
1x

2+ λ4
2y

2+ λ4
3z

2+
∑
q

(fq + bq)†(fq + bq)

+
∑
q

{
ξqr(fq + bq)† + HC

}
(6)

P = U P̃U−1 = p+
∑
q

q(fq + bq)†(fq + bq) (7)

and

|9〉 = U−1|9̃〉. (8)
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We then choose our system wave function to be

|9̃〉 = ϕ(r) exp(ip0 · r) exp

{∑
q

(fqb
†
q)− HC)

}
κ0 (9)

wherep0 is an additional variational parameter,ϕ(r) is the electronic wave function andκ0

is the zero-phonon state which satisfies

bqκ0 = 0. (10)

Thus we obtain

J = 〈ϕ(r)|p2+ λ4
1x

2+ λ4
2y

2+ λ4
3z

2|ϕ(r)〉 + p2
0 +

∑
q

{〈ϕ(r)|ξqr|ϕ(r)〉fq + HC}

+
∑
q

|fq|2− u · p0−
∑
q

(u · q)|fq|2. (11)

Now minimizing J with respect top0 andfq we have

∂J

∂p0
= 0→ p0 = u/2 (12)

and

∂J

∂f ∗q
= 0→ f ∗q = −

〈ϕ(r)|ξ ∗qr|ϕ(r)〉
(1− u · q) . (13)

Then the energy of the moving polaron is given by

Eg = 〈9|H |9〉 = 〈ϕ(r)|p2+ λ4
1x

2+ λ4
2y

2+ λ4
3z

2|ϕ(r)〉 + u2/4− 2
∑
q

|〈ϕ(r)|ξ ∗qr|ϕ(r)〉|2
(1− u · q)

+
∑
q

|〈ϕ(r)|ξ ∗qr|ϕ(r)〉|2
(1− u · q)2 . (14)

For the static polaronu = 0 and the energy then turns out to be

Ep = 〈ϕ(r)|p2+ λ4
1x

2+ λ4
2y

2+ λ4
3z

2|ϕ(r)〉 −
∑
q

|ϕ(r)|ξ ∗qr|ϕ(r)〉2. (15)

The minimum ofEp with respect to the appropriate variational parameter would give
the ground state energy of the polaron in reduced dimensionality.

For the slowly moving electron,u being small, we can expand(1 − u · q)−1 and
(1− u · q)−2 in powers ofu and retain only terms up tou2 to obtain the energy of the
slowly moving polaron

Eg = Ep + u
2

4

[
1+ 4

∑
q

q2|〈ϕ(r)|ξ ∗qr|ϕ(r)〉|2 sin2 ϑ cos2 ϕ

]
. (16)

In Fröhlich units the coefficient ofu2/4 can then be identified with the effective mass of
the polaron.

Assuming that there is no coupling between the electron motion in theyz plane (where
the electrons (holes) have the strongest confinement in the 2D case) and in thex direction
(where they have the strongest confinement in the 1D case), we now define the ground state
of the electron in the adiabatic approximation

ϕ(r) =
(√

π

2

)−3/2(1

λ

)(
1√
β

)
exp(−β2x2/2) exp(−λ2ρ2/2) ρ = (y, z) (17)
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Figure 1. The ground state energy (εp) (in units of αhω) of the Fr̈ohlich polaron versus
confinement length (β) (in Fröhlich units) in Q2D systems.

where either ofλ or β is taken as a variational parameter and the other will describe the
degree of confinement.

The general expression for the binding energy (1εp = −Ep) and the effective mass in
the quasi-2D limit becomes

1εp = −√(1/2π)αλ{(1/b2− 2) tan−1(bβ/λ)− (λ/bβ)}/b (18)

m∗/m = 1+ 2
√
(1/2π)α{sin−1 b − b√(1− b2)}(λ/β)3 (19)

where

b = √(β2− λ2)/β (20)

λ = √(1/2π)α{(1/b2) tan−1(bβ/λ)− (λ/bβ)}/b. (21)

For the strict 2D caseβ → ∞ and we obtain the polaron binding energy and the
effective mass in the GS state [15]

1ε2D
p = πα2/8 (22)

m∗/m = 1+ (√2π)4α4/64 (23)

where

λ = (√2π)α/4. (24)
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Figure 2. The ground state energy (εp) (in units of αhω) of the Fr̈ohlich polaron versus
confinement length (λ) (in Fröhlich units) in Q1D systems.

On the other hand settingβ as variational parameter and increasingλ we arrive at the
quasi-1D characterization of the polaron which in the limit ofλ → ∞ will give a strict
one-dimensional polaron.

Thus in the quasi-one-dimensional limit binding energy and the effective mass become

1εp = √(1/2π)αβ{2F1(1/2, 1, 3/2, β2/µ2)+ (4/3)(β2/λ2)2F1(3/2, 2, 5/2, β2/µ2)}. (25)

m∗/m = 1+ 2α
√
(2/π)(β/a′)3[a

√
(1+ a2)− log{a +√(1+ a2)}] (26)

where

β = √(2/π)α{2F1(1/2, 1, 3/2, β2/µ2)− (2/3)(β2/λ2)2F1(3/2, 2, 5/2, β2/µ2)} (27)

a = √(λ2− β2)/β (28)

a′ = √(λ2− β2)/λ (29)

µ = λβ/√(λ2− β2). (30)

Here we observe that polaron binding energy and effective mass diverge in the strict
1D limit.

For λ = β we obtain the bulk value [11, 12]

λ = β = √(2/9π)α (31)

1ε3D
p = α2/3π (32)
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Figure 3. Relative polaronic mass enhancement{(m∗ − m)/m} (in units of α4) versus
confinement length (β) (in Fröhlich units) in Q2D systems.

and

m∗/m = 1+ 16α4/81π2. (33)

3. Results and discussion

According to the derivation presented in the previous section the contribution of the electron–
phonon interaction to the ground state energy and the effective mass of the polaron depends
on the spatial dimensions of the quantum heterostructure. It is to be noted that we have
used the same Fröhlich coupling constant,α, which was derived for a three-dimensional
electron gas, in reduce dimensionality also. Even though the coupling constant will not
remain the same for the low-dimensional electrons and the bulk phonons, it is a reasonable
approximation in our theory since we have considered the barrier part only to yield the
electronic potential and thus neglect difference in masses, dielectric constants and phonon
energy between the well part and barrier part [14].

A detailed study of the effect of electron confinement on the polaronic properties has
been made to show that this approach may apply equally well to retrieve the bulk 2D and
3D results. In figures 1 and 2 we have plotted the GS energy of the Q2D and Q1D polaron
respectively as a function of the confinement length. We notice from figure 1 that the
polaron effect increases due to decrease of the layer width whenβ increases and as a result
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Figure 4. Relative polaronic mass enhancement{(m∗ −m)/m} (in units ofα4) versus logarithm
of the confinement length (λ) (in Fröhlich units) in Q1D systems.

|Ep| increases and approaches the 2D limit whenβ → ∞. In figure 2 we are concerned
with the effect of the dimensionality of the Q1D structure on the GS energy of the Fröhlich
polaron. The GS energy of the polaron in the Q1D heterostructure increases rapidly with
the increase ofλ and diverges in the strict 1D case whenλ→∞.

The behaviour of the effective mass as a function of confinement length of the quantum
heterostructure is depicted in figures 3 and 4. We observe that the effective mass of the
polaron in the Q2D heterostructure also increases with the decrease of the layer width and
approaches the exact 2D limit. On the other hand the effective mass of the Fröhlich polaron
in the Q1D structure increases more rapidly whenλ increases and we notice from figure 4
that it diverges logarithmically in strictly one dimension.

Thus the high degree of localization in reduced dimensionality leads to an enhancement
in the effective phonon coupling which in turn brings about the possibility that the quantum
behaviour and the dynamics undergo drastic changes with respect to the bulk when carriers
are artificially confined to a volume whose dimensions are well below a critical length.
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